Homology and Cohomology of Stacks

ثبت نشده
چکیده

Throughout this lecture, we let k denote an algebraically closed field, ` a prime number which is invertible in k. In the previous, we define the `-adic cohomology H∗(X; Λ), where X is a quasi-projective k-scheme and Λ ∈ {Z`,Q`,Z/`Z}. Our first goal in this lecture is to review the corresponding theory of `-adic homology. Definition 1. Let Λ be a commutative ring, and let ModΛ denote the∞-category introduced in the previous lecture (whose objects are injective chain complexes of Λ-modules). We say that an object M ∈ ModΛ is perfect if it is dualizable with respect to the tensor product on ModΛ. That is, M is perfect if there exists another object M ∨ ∈ ModΛ together with maps e : M∨ ⊗Λ M → Λ c : Λ→M ⊗Λ M∨

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bredon-style homology, cohomology and Riemann–Roch for algebraic stacks

One of the main obstacles for proving Riemann–Roch for algebraic stacks is the lack of cohomology and homology theories that are closer to the K-theory and G-theory of algebraic stacks than the traditional cohomology and homology theories for algebraic stacks. In this paper we study in detail a family of cohomology and homology theories which we call Bredon-style theories that are of this type ...

متن کامل

Relative (co)homology of $F$-Gorenstein modules

We investigate the relative cohomology and relative homology theories of $F$-Gorenstein modules, consider the relations between classical and $F$-Gorenstein (co)homology theories.

متن کامل

Geometry of Maurer-Cartan Elements on Complex Manifolds

The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie alge...

متن کامل

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.

متن کامل

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013